Program-size Complexity Computes the Halting Problem
نویسندگان
چکیده
منابع مشابه
Boolean Circuit Lower Bounds
The lectures are devoted to boolean circuit lower bounds. We consider circuits with gates ∧,∨,¬. Suppose L ∈ {0, 1}∗ is a language. Let Ln = L∩{0, 1}. We say that L is computed by a family of circuits C1, C2, . . . if on an input x = (x1, . . . , xn), Cn(x) is 1 when x ∈ Ln and is 0 when x / ∈ Ln. For a circuit C, we define size(C) to be the number of edges in the graph representing C, and dept...
متن کاملChaitin Ω Numbers and Halting Problems
Chaitin [G. J. Chaitin, J. Assoc. Comput. Mach., vol. 22, pp. 329–340, 1975] introduced Ω number as a concrete example of random real. The real Ω is defined as the probability that an optimal computer halts, where the optimal computer is a universal decoding algorithm used to define the notion of program-size complexity. Chaitin showed Ω to be random by discovering the property that the first n...
متن کاملChaitin Omega Numbers and Halting Problems
Chaitin [G. 1975] introduced Ω number as a concrete example of random real. The real Ω is defined as the probability that an optimal computer halts, where the optimal computer is a universal decoding algorithm used to define the notion of program-size complexity. Chaitin showed Ω to be random by discovering the property that the first n bits of the base-two expansion of Ω solve the halting prob...
متن کاملAsymptotic Proportion of Hard Instances of the Halting Problem
Although the halting problem is undecidable, imperfect testers that fail on some instances are possible. Such instances are called hard for the tester. One variant of imperfect testers replies “I don’t know” on hard instances, another variant fails to halt, and yet another replies incorrectly “yes” or “no”. Also the halting problem has three variants. A tester may test halting on the empty inpu...
متن کاملAsymptotic behavior and halting probability of Turing Machines
Through a straightforward Bayesian approach we show that under some general conditions a maximum running time, namely the number of discrete steps done by a computer program during its execution, can be defined such that the probability that such program will halt after that time is smaller than any arbitrary fixed value. Consistency with known results and consequences are also discussed. 1 Int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bulletin of the EATCS
دوره 57 شماره
صفحات -
تاریخ انتشار 1995